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Received 1 I April 1994 

Abskmi  We study the reladonships among the various forms of the q-osollator algebra and 
consider the conditions under which it suppom a Hopf ~VUcture. We also present a generalization 
of this algebra together with its corresponding Hopf stmchlre. Its multimode extensions are also 
considered. 

1. Introduction 

Quantum groups, or more precisely the quantized universal enveloping algebras U&) of 
Lie algebras L, first emerged as the basic algebraic structures in the study of the quantum 
Yang-Baxter equations [I]. It was later shown by Drinfeld [2] that these structures could be 
described by a general class of associative algebras, called Hopf algebras, which are neither 
commutative nor co-commutative. Essentially, the non-co-commutativity is achieved by 
introducing a free parameter q which is usually called the deformation parameter. 

One of the most well studied examples is that of the quantum group Uq(su(2)) 
(sometimes denoted as su,(2)) which was first considered by Skylanin [3] and independently 
by Kulish and Reshetikhin [4]. Recently, this algebra has been realized in terms of a q- 
analogue of the bosonic creation and annihiliation operators [5,6]. Indeed, Macfarlane [5] 
introduced these q-oscillators a, a+ by considering their action on a Hilbert space with 
basis [In)), n = 0,1,2,. . . defined by 

a10) = 0 In) = ([n]!)-"2(a+)n10) (1) 

where 

Then, by setting 

a+a = [ N] 

aa+ = [ N +  I] 

where N satisfies 

N l n )  = nln) 
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he was able to furnish a representation for the q-oscillators 

C H Oh and K Singh 

a+ln) = [n t l]’’21n+ 1) 

aln) = [n]’/’1n - I ) .  

Moreover, in this representation, one also has the following relations: 

aa + -qa+a  =q-N 

aa+ - q-’a+a = qN 

besides 

(4) 

( 5 )  

Biedenharn [6] also independently arrived at similar results but instead of starting with 
relations (Z), he postulated (4) and (6) with q replaced by q”’. 

By using the Jordan-Schwinger construction, they gave a bosonic realization of su,(Z). 
Conversely, the q-oscillators can also be obtained directly from the usual representation of 
su,(2). Ng [7] showed that by setting j + 00, m + 00 in the basis vectors spanning the 
Hilbert space of su,(2), the q-oscillators can be obtained which satisfy relations (2). 

Although the q-oscillators have been primarily used in giving realizations of quantum 
groups, they themselves may support a quantum group structure. Indeed, Hong Yan IS] 
showed that the q-oscillator algebra, when expressed in a symmetric form, could be endowed 
with a non-co-commutative Hopf structure. Instead of relations (2), he considered the 
commutatort 

[a, a+] = [N + 11 - [NI. (7) 

Then, together with relations (6), he was able to construct a non-trivial Hopf algebra. It is 
worth noting that while relations (2) imply relation (7), the converse is not true; it is only 
in the representation (3) that the two are equivalent. In fact, the same holds for relations 
(4) and ( 5 )  with regard to (2) or (7). 

In the following section, we discuss some issues pertaining to this inequivalence. 
In particular, we study the relationships among the various forms of the q-oscillators. 
Moreover, we also clarify some misleading notions in the literature about the q-oscillator 
algebra when regarded as a quantum group. In section 3, we present a generalized deformed- 
oscillator algebra which also has a Hopf structure. Here, Hong Yan’s algebra is recoverd as 
a special case. The representation of this generalized algebra is also furnished. In section 
4, we consider its multimode extensions. Besides a set consisting of mutually-commuting 
oscillators, we also present a multidimensional quantum group based on OUT generalization. 

t In [SI. the right-hand side is expmed as [N t 11 - [ N  - $ 1 .  Here we have made he replacement N .) Nl- 
to be consistent with the notarion that we have adopted in this paper. 
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2. q-oscillator algebras 

The q-oscillator algebra consists of three elements a,  a+ and N defined by (6) together with 
one of the relations (2). (4), (5 )  or (7). In the following, we will examine how the various 
forms, namely, (Z), (4), ( 5 )  and (7) of the oscillator algebra are related to each other. Here, 
relations (6) will be implicitly assumed as part of the algebra. For clarity, we consider two 
at a time. 

Case (i): between (2) and (4).  
substituting (2 )  into the left-hand side of (4), we have 

Starting with (2). we show that it implies (4). Indeed, by 

- qa+a = [ N  + I ]  - q [ N ]  = q-" (8 )  

which is precisely the right-hand side of (4). On the other hand, to see whether (4) implies 
(2), we construct the Casimir operator for the algebra defined by (4) and (6). Now, it is 
easy to verify that 

C(4) = q W N ( [ N ]  - U + U )  ( 9 4  

commutes with all the operators, i.e. a ,  a+, N .  Thus, one can write 

U+U = [NI - q"C(4). 

Moreover, we also have, using (4), 

(9b) 

UU+ = qa+a + q-" = [ N  + 11 - qN+'C(4).  (9c) 

It is apparent then that (4) implies (2) only if CC4) = 0. To show inequivalence, it is sufficient 
to show that there exist representations of (4) in which C(4) is non-zero. To this end, we 
have for n = 0, I ,  2.  . . (see [9]) 

N l n )  = (WO + n)ln) ( l0c )  

which suitably represents (4) and (6). Note that this representation carries a free parameter 
WO and is more general than (3) above. In this representation, one has 

C(4)h) = q-"'[volln) (11) 

which shows that for vo # 0, C(4) cannot be regarded as the null operator. Thus, we can 
surmise that (4), in general, does not imply (2) .  

Case (ii): between (2)  and (5). Using arguments parallelling those above, it is easy to 
show that (2) implies (5) but not the converse. Here C(5) is similar to C(4 with q q-'. 
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Case (iii): between (2)  and (7). 
construct the Casimir operator Cm for (7) which reads as 
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It is obvious that (2) implies (7). For thc converse, we 

C(7) = [NI - a+a (124  

or 

a+a = [NI - C(7). (12b) 

Using (7), we also have 

aa+ = [ N +  11 -CO). (124 

From these, it is clear that (7) implies (2) only if Cg) = 0. Again for non-equivalence, it 
suffices to show that CO) is non-zero in some representation. In this case, one can construct 
the following representation: 

for n = 0, 1, 2. .  . in which 

Gnln) = -[volln). (14) 

It is evident then that C(7) # 0 €or uo # 0. 

Case(iu): between (4) and (5). From (9b) and (9c) we have 

aa+ - q-'a+a = [ N  + 11 - qN+'C(4) - ~ - ' ( [ N I  - q N C ( q )  
= 4 N  - (4  - q- ' )qNC(4)  (15) 

which shows that (4) is not equivalent to (5) since, in general, C,) # 0. Similarly, (5) does 
not imply (4). 

Case (U): between (4) and (7). From (9b) and (Sc), we obtain 

aa+ - a+a = [ N  + I ]  - [ N I  - (q - I)qNC(4) 

which means that (4) does not imply (7). Conversely, from (1%) and (12~). we have 

aa+ -qu ia  = [ N  + 11 - q [ N ]  - C(7) + qC(7) 

= q-" + (4  - WO) 

which again demonstrates the inequivalence. 

Case (ui): Bemeen (5) and (7). Argumenffi and conclusions similar to case (v) with 
q * 4-1. 
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From the results above we can surmise that although the various forms are 
interchangeable in the representation (3). they are nevertheless inequivalent at the algebraic 
level. This distinction becomes particularly important when one deals with pure algebraic 
constructs. For instance, when we %e considering the Hopf structure of the q-oscillators, it 
is necessary to distinguish the relation in question. Now, due to the equivalence of (2),  (4), 
(5) and (7) in the representation (3), it is sometimes implied that they are all Hopf algebras. 
Indeed, it has been claimed (see [ l o ] )  that relations (4) together with (5 )  which imply (2)  
and, hence, (7) have a Hopf structure defined by? 

(18a) 

(186) 

A ( N )  = A'@ 1 + 1 Q  N + y l @  1 (W 
A(1) = 1 @ 1 (184 

<(a+) = €(a) = 0 (184  

€(A') = -y E ( 1 )  = 1 (18n 

~ ( n + )  -qI/za+ S(a) = -q-'/Za (188) 

S(N) = -N - 2 ~ 1  S(1) = 1 (W 

l/Z(N+l/Z) + iq-I/Z(N+I/Z) @ + - i O / Z  A(a+) = (a+ 8 q a )e 
A b )  = (a @ q I/Z(N+i/Z) + iq-I/Z(N+I/2) a)e-i@/2 

where y = f - ie/ In q and 0 = (n/Z) + 2x1, I E Z. Here, the maps A, 6 and S which are 
the coproduct, co-unit and antipode, respectively, satisfy 

A(ab)  = A(a)A(b)  €(ab)  = c(a)e(b) S(ab) = S(b)S(a) (19) 

for any two elements a, b of the Hopf algebra. In other words, they are algebra 
homomorphisms (antihomomorphism for the case of S). Although these constitute a Hopf 
structure for relation (7) together with (6),  they do not for relations (4). (5) and (2). To see 
why this is so, consider relation (4) as an example. By applying A to both sides, we have, 
using (19), 

A(U)A(U+)  - ~ A ( ~ + ) A ( u )  = -i{qdN Q qN+'lZ + i(1- q)q-'/2q-'/zNa Q q'lZNa+ 
- q - ( N + l / 2 )  Q q-N + i(1 - q)ql/2q-1/2Na+ 8 qi/2Na) (20) 

whereas 

A ( ~ - N )  = i q - l / z q - N  q-N (21) 

which means that 

A(a)A(a+) - qA(a+)A(a)  # A(qdN) .  (22) 

Similarly, one can easily verify that A is also incompatible with (2)  and (5). Thus, the 
Hopf structure is valid only for relation (7) and not for the rest. 

t In [lo]. q1I2 is used instead of g, 
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3. Generalized poseillator algebra 

Recently, some authors [ 11 J have considered a generalized version of (4) 

C H Oh and K Singh 

aa+ - qa+a = q"+P (23) 

together with (6) and attempted to give it a Hopf structure. However, the coproduct defined 
there fails the compatibility requirement (5) and (2) in the same way as (18a) and (18b) 
failed for relations (4). Specifically, the proposed coproduct 

A(a+) = at @ q I/Z(uN+B) + q - l / Z ( a N t B )  @a+ (244 

(24~)  

(24) 

(24b) A(a)  = a @ q 1/2(arN+P) + q-I/2(CA"B) @ a  

A ( N )  = N 8 1 + 1 8 N +  (B/rr)l@ 1 

A(a)A(a+) - qA(a+)A(a)  # A(qUNtB).  

fails with respect to (23) 

In this section, we furnish a generalized version of the q-oscillator algebra which can be 
endowed with a Hopf structure. 

As seen from the previous section, among the various forms of the q-oscillator algebra, 
relation (7) is the only version that supports a Hopf structure. So, it is conceivable that 
any generalization would most likely be based on (7) rather than (4). To write down a 
generalized version of (7), it is instructive to consider again the relationship between (4) 
and (7). Instead of using a representation in which Cc4) is zero (see (16)), one can also 
obtain (7) by considering both (4) and (5). When taken together, they imply (2) which in 
turn implies (7). It is worth noting that (5)  is the q ff q-' analogue of (4). Now, let us 
apply this procedure to (23). Since 01 and p are arbitrary, we can replace 01 -+ -01 and 
p -+ - p  and rewrite (23) as 

- = q-'LN-B, (26) 

Its q U q-' analogue is given by 

aa+ - q-la+a = q"+B (27) 

which together with (26) implies that 

Thii in turn leads us to 

or 
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where 

PI -pz = 1 

which is the generalization of (7) we sought. To be as general as possible, we will also 
modify (6) somewhat by introducing a free parameter 9 into the commutation relations 

UN, a'] = vu+ [ N ,  a] = -vu. (31) 

It is worth noting that the algebra composed of (30) and (31) admits a non-trivial central 
term which is given by 

Now, it is also important to note that, as in the case between (2) and (7). relations (30) do 
not necessarily imply (28) although the latter have been used in conshucting the former. 
This can be demonstrated easily by constructing a representation of (30) and (31) in which 
(26), (27) and (28) do not hold individually. Indeed, in the basis {In) 1, n = 0, 1,2, . . . , a 
representation of (30) and (31) is given by 

(33a) 
cosh(ta(uo + (n - 1)q/2) + t(p+ f)) sinh(tqan/2) 

cosh(c/2) sinh(tqa/2) 
aln) = 

NI4 = + no)ln) (334 

where we have taken t = lnq and WO is a free parameter which characterizes the 
representation. In this representation, it is not difficult to see the inequivalence between 
(30) and any one of (26H28). This is true even when q is set to 1 .  

We start 
by considering the associative algebra 'H generated by (1, a+, a, NI and postulating the 
following for the coproduct, co-unit and antipode: 

Now, let us turn to the Hopf structure associated with (30) and (31). 

A@+) = cia+ 8 qn" + c2quzN 8 a+ (344 

A b )  = cga 0 9'" + ~4q'"" @ a  (34Q 

A ( N )  = c ~ N  8 l + c b l @  N + y l  81 (34d 

A(1) = 1 8  1 (344 

€(U+) = c, €(U)  = c* (344 

E(N) = cs E(1) = 1 (34n 

S(U+) = -c@+ S(a) = -c11a (34d 

S ( N )  = -clzN + cl3l S(1) = 1. (34N 
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Here, ci (i = 1.2, . . . 13). a; (i = 1,2. . . .4) and y are constants to be determined. These 
constants are obtained by requiring that A, t and S satisfy the co-associativity, co-unit and 
antipode axioms, respectively, 

C H Oh and K Singh 

where h E H and m : 71 @ H -+ H is the multiplication map. By substituting the different 
generators of 7 i  into (35) and noting that 

for an arbitrary a, we obtain 

C ]  = q U ' Y  Q =qaa"y C )  = 9-y  c4 cs = 1 C6 = 1 

c 7 = 0  c * = o  c s = - y  C l O  = qn'n C I ]  = q-qq C ] 2  = 1 

c1, = -2y a2 = -a, 014 = -a 3 (37) 

which essentially fixes 15 of the I8  constants in (34). We must also require that A, 6 and 
S be algebra homomorphisms. Here, further constraints arise when we set 

A(u)A(u+) - A(u+)A(~)  = A([aN + pi1 - [UN + pzl). (38) 

For this to be satisfied, we must impose the following: 

q(ul-urk = 1 

p Y  = -qt%+&. 

al+a3=a 

With these, the homomorphisms E and S entail no further constraints. 
equations (39) imply that 

For real q ,  

(404 1 
2 011 =a, = -a 

and 

which now fixes all the constants in (34). 
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To summarize briefly, the Hopf smcture for 'H, with defining relations (30) and (31). 
reads as 

where y satisfies (40b). Note that by setting 7 = 1 ,  #J1 = 1, #J2 = 0, a = 1 ,and putting 
k = 21, I E Z in (406) we recover the Hopf sbxcture associated with (6) and (7). 

4. Multimode q-oscillators 

Various multimode extensions of the q-oscillators have been proposed [4,5,12,13]. In 
particular, the extension of (4) and (5) or equivalently that of (2) consist of taking 
p independent oscillators (mutually commuting) [a;, a:, N;li = 1,2,. . . p ]  with the 
relations [ 131 

a;.: - (1 + & j ( q  - 1))a;ai = 8ijq-" 

uta,? - (1 + &j(q-' - l))a,?ai = 6.. I J q  N. 

[N; ,a j]  = -8tjaj [Ni,a,t] =&ju:. (424 

( Z W  

(4%) 

(42) + + - 0  [ai,ajl =[ai  .aj 1 - 

Here, we present a multimode extension of (30) and show that it also supports a non- 
co-commutative Hopf structure. To this end, we propose the following relations for the set 
of p oscillators: 
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where ai, pi and vi (i = 1 ,2 , .  , . p )  are free parameters. Then, it can easily be shown that 
the associative algebra generated by (1, ai, U:, Nj)  (i = I ,  2 , .  . . p )  with the above defining 
relations admits the following non-co-commutative Hopf structure: 

C H Oh and K Singh 

with 

In verifying the homomorphism property, we have used 

+ PN, = q - ~ ~ j % q P N ~ a +  ai 4 

o i q ~ N i -  - q  ~ n j b  9 PS ai (46b) 

for an arbitrary p .  Here, the Hopf structure is essentially the Hopf structure of each oscillator 
taken independently. It is interesting to note that the oscillators can also be coupled in a 
non-trivial way. To see how thii can be accomplished, let us examine relations (39) closely. 
If we allow 17 to be complex and relate it to q via 

2ni q = -  
In 4 

(47) 

then relation (394 implies that a1 - a3 = 1 (i E Z). Now, this means that we can assign 
integer values to 011 and alp which in turn allows the indexing of oscillators. For instance, if 
we set at = m and a3 = n then the oscillators can be indexed as a, and U:, respectively. 
This effectively permits a number of oscillators to be considered together. Moreover, with 
01 also being integer valued, as a consequence of (39b), the commutation relations between 
the various oscillators become non-trivial. As for (394, we have 

Then, by putting k = 0 (for simplicity) and using (30b). we obtain 

in 1 
B1 = (011 + 03)Y + 21nq + -  

i n 1  
Bz = (a1 t a3)y t - - - 21nq 2' 
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With these, we havet 

where we have taken 4 = e(. Thus, the commutation relations for a system of p oscillators 
can be written as 

sinh(e(m + n)(N + y ) )  
cosh(fj2) 

[a,, a i ]  = i 

where m ,  n = 1,2, . . . p .  It is important to note that u n l i e  the previous case we have only 
one N operator. The corresponding Hopf structure is then given by 

A(a,f)  = U,' 8 qm(N+y) + q-m(N+yt Q a,' 

A ( N )  = N 8  1 + l  E" + y l  Q 1 

(524 

(52b) m ( N + y )  + q-m(N+y) 8 a, A(am) a m  8 

( 5 2 ~ )  

A(1) = I Q  1 (524  

€(a;) = €(am) = 0 

SCa,') = -a: 

€ ( N I  = - y  €(I) = 1 

S(a,) = -a, 

S ( N )  = - N  - 2 y l  S(1) = 1. 

5. Conclusion 

In this paper, we have considered the various forms of the q-oscillator algebra and shown 
that, contrary to the commonly held notion, they are actually not equivalent. It is also 
pointed out that the Hopf structure found for one of these versions does not extend to the 
rest by virtue of this inequivalence. For the algebra that is a quantum group, we have given 
its generalization together with the associated Hopf structure. Based on this generalization, 
we have also furnished two multimode extensions. In the first example, we have considered 
a set of (mutually commuting) independent oscillators and shown that the Hopf structure 
of each oscillator system extends naturally to the multimode case. For the second example, 
we have presented a Hopf algebra comprising of a set of non-commuting OsciIlators. 

t Here, we have set a, = m and a3 = n and the corresponding oscillators by a, and a i ,  respectively. 
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